Formules CNF et Graphes
نویسنده
چکیده
Résumé : Nous proposons dans cet article une nouvelle représentation sous forme de graphe d’une formule CNF. Elle étend le graphe d’implication 2-SAT au cas général. Chaque clause est représentée comme un ensemble (conditionnel) d’implications et codée avec plusieurs arcs étiquetés contenant un ensemble de litéraux, appelé contexte. Cette nouvelle représentation permet d’étendre quelques caractéristiques intéressantes de l’algorithmique 2-SAT. Parmi elles, la résolution classique est reformulée en utilisant la fermeture transitive d’un graphe. Les chemins entre les noeuds permetent de donner une façon originale pour calculer les conditions minimales sous lesquels un litéral est impliqué.Deux utilisations concrètes de ce graphe sont présentés. La première concerne l’extraction des ensembles 2SAT strong backdoor et la seconde consiste en une technique de pré-traitement des formules CNF. Des résultats expérimentaux prometteurs sont obtenus sur plusieurs classes d’instances issues des dernières compétitions.
منابع مشابه
Kazhdan–Lusztig polynomials of boolean elements
We give closed combinatorial product formulas for Kazhdan–Lusztig poynomials and their parabolic analogue of type q in the case of boolean elements, introduced in [M. Marietti, Boolean elements in Kazhdan–Lusztig theory, J. Algebra 295 (2006)], in Coxeter groups whose Coxeter graph is a tree. Such formulas involve Catalan numbers and use a combinatorial interpretation of the Coxeter graph of th...
متن کاملA combinatorial analysis of Severi degrees
Based on results by Brugallé and Mikhalkin, Fomin and Mikhalkin give formulas for computing classical Severi degreesN using long-edge graphs. In 2012, Block, Colley and Kennedy considered the logarithmic version of a special function associated to long-edge graphs which appeared in Fomin-Mikhalkin’s formula, and conjectured it to be linear. They have since proved their conjecture. At the same t...
متن کاملModel-Checking of CTL on Infinite Kripke Structures Defined by Simple Graph Grammars
We present an algorithm for checking whether an innnite transition system, deened by a graph grammar of a restricted kind, is a model of a formula of the temporal logic CTL. We rst present the syntax and the semantics of CTL, that are deened with respect to transition systems, labelled with atomic propositions. Then, we show how to adapt the formalism of graph grammars, for expressing such innn...
متن کاملModel-checking of Ctl on Infinite Kripke Structures Defined by Simple Graph Grammars Yves-marie Quemener and Thierry Jéron
We present an algorithm for checking whether an innnite transition system, deened by a graph grammar of a restricted kind, is a model of a formula of the temporal logic CTL. We rst present the syntax and the semantics of CTL, that are deened with respect to transition systems, labelled with atomic propositions. Then, we show how to adapt the formalism of graph grammars, for expressing such innn...
متن کاملChamber Structure For Double Hurwitz Numbers
Double Hurwitz numbers count covers of the sphere by genus g curves with assigned ramification profiles over 0 and ∞, and simple ramification over a fixed branch divisor. Goulden, Jackson and Vakil (2005) have shown double Hurwitz numbers are piecewise polynomial in the orders of ramification, and Shadrin, Shapiro and Vainshtein (2008) have determined the chamber structure and wall crossing for...
متن کامل